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A new method for experimental determination of the thermal diffusion factor ~a- 
for binary gas mixtures with a thermal diffusion column (TDC) is developed, 
based on A. M. Rozen's equation of TDC. The experimental results for aT are 
obtained in a reduced form in this approximation. An experimental reference 
point, determined in the same TDC with a standard gas mixture, is used for the 
transformation of the results for c~+ in absolute units. The proposed method is 
applicable for arbitrary gas mixtures, irrespective of the mass difference of the 
components. 
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1. I N T R O D U C T I O N  

Thermal  diffusion (TD)  was theoretically predicted by Enskog [ 1 ]  and 
C h a p m a n  [ 2 ]  independently in 1911 and 1912. The effect was experimen- 
tally confirmed in 1917 by C h a p m a n  and Dou t son  [3 ]  on H 2 - C O  2 and 
H2-SO2 mixtures using the two-bulb method.  The detailed investigation of  
this effect was started with the works of Ibbs [-4] and other investigators 2 
years later. More  recently a sufficiently r igorous point  of view on the 
physical aspects of T D  was given by Monchik  and Mason  [5 ]  (see also 
Ref. 6). 

Up  to the discovery of the thermal diffusion column (TDC)  by Clusius 
and Dickel [7] ,  T D  aroused only academic interest. The remarkable 
conclusion of Clusius and Dickel, that  it is possible to create a cont inuous 
mass transfer by the thermal diffusion effect in conjunct ion with the vertical 
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convection flows, led to the practical use of the TDC for separation of 
liquid and gas mixtures. 

The theory of TDC was developed by Clusius and Dickel [8], 
Waldmann [9], and Van der Grinten [10]. A more general theory was 
lated proposed by Bardeen [ 11 ]. 

Exact solutions for the TDC with a flat geometry were given by Furry 
et al. (FJO) [12]. The coaxial cylindrical column, more suitable for prac- 
tice, was considered by Furry and Jones [ 13 ]. In all the former cases very 
idealized models were used--a Maxwellian gas or a gas of hard spheres, 
one-component systems, and others. The theories of TDC are reviewed in 
an elementary, but physically clear way in the article by Jones and Furry 
[142. 

All these early theories are based on the kinetic theory of gases, the 
kinetic coefficients being obtained from kinetic equations derived in terms 
of collision cross section and mean free path. The FJO theory was modified 
by Rutherford and co-workers [15, 16] for the purpose of including the 
case of the light-isotope mixture separation in TDC with an annular space 
geometry. Relations, derived in Ref. 16, have been used by this author for 
obtaining the TD factor aT of dilute Ne-Xe mixtures in the TDC, the 
separation process being confined between two vertical, concentric tubes 
[17]. In more recent papers [18, 19], Rutherford extended his theoretical 
treatment of the problem, obtaining numerical evaluation for TDC 
equations under conditions of large temperature differences and when 
the properties of the gas mixture components strongly depend on the 
temperature. 

On the other hand, Rozen [20] showed that the problem for 
separation of gas mixtures in a TDC can be considered in the framework of 
the general phenomenological theory of mass transfer using the concept of 
transfer unit height (TUH). 

2. T H E R M A L  D I F F U S I O N  FACTOR: M E T H O D S  FOR 
ITS D E T E R M I N A T I O N  

According to nonequilibrium thermodynamics [21], the overall mass 
diffusion flow j along the coordinate s in an n-component system at the 
absence of any external forces is given by 

Jk = - P  Dkj ~xj/Os -- DTk ~(ln T)/Os (1) 
j 1 

where p is the density of the gas mixture, xj is the concentration of 
the corresponding component of the mixture, DTk is the thermodiffusion 
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coefficient of the kth component, and D~j is the matrix element of the 
coefficient of mutual diffusion. 

At equilibrium the overall flow is equal to zero, and from Eq. (1) 
follows 

C/n ) dxj= Dfk Z Dkj d(ln T) (2) 
\ t j = l  

Usually instead of Dvk the thermal diffusion factor c~ T is used. The 
latter is defined by 

DTk=eT~jXj ~ (xkDkj) (3) 
j=l 

In the case of a binary gas mixture, one obtains from Eqs. (2) and (3) the 
following expression for C~T: 

If a T is independent of the temperature T, the integration of Eq. (4) 
between two points at which the temperatures are T1 and T2 and the 
concentration of the light component, Xl and x2, respectively, leads to 

c~ T = In q/ln(Tz/T, ) (5) 

where q is defined as a coefficient of separation for a gas mixture at the 
stated conditions 

q = x2(1 - xl)/xl(1 - x2) = (T2/TI) ~T (6) 

The thermal diffusion factor aT can be determined by Eq. (5) or (6), 
using the two-bulb method [-3] or swing separator [22]. 

The two-bulb method was historically the first to be used and now is 
considered classical. However, it is affected by several serious drawbacks. 
In order to get reliable data, large temperature differences must be used 
because of the small concentration changes. The great relaxation times 
involved make this method difficult to use at high pressures (i.e., for high 
densities). 

The swing separator does not have these drawbacks, but when 
working at high pressures, there are technological problems with the 
construction and the operation of the pump, which has to push and pull 
the gas as a whole through the assembly. 
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Another method for the experimental determination of the thermal dif- 
fusion factor c~T is gas separation process analysis in a thermal diffusion 
column [7]. The TDC method seems to be the most universal one with 
respect to the working temperature and pressure ranges [15]. An ideal 
TDC with flat-paralM geometry is shown schematically in Fig. 1. The 
gravitational field and the difference between temperature T2 and tem- 
perature T1 of the hot and cold wall, respectively, create convective flows L 
and G through the column, leading to a considerable multiplication of the 
elementary TD effect expressed by the transverse diffusion mass flow 
along the height of the column. According to Vasaru et al. [23], 

= H x (  1 - x )  - K Ox/az -- K'a O2x/Oz2 + Kt  Ox/Ot (7) 

where H, K, K}, and K, are transport coefficients, reflecting the influence of 
the diffusion, hydrodynamic, and thermal processes on the formation of the 
concentration field; (~?x/~t) denotes the time derivative. 

h 

Fig. 1. Schematic drawing of a thermal dif- 
fusion column with flat-parallel geometry. 
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In the case of the stationary or quasi-stationary process, Ox/& = 0 and 
the term K , ~ x /&  should be omitted [23]. Saxena and Raman showed 
[24] that neglecting the third term in Eq. (7), i.e., assuming that 
(K~ Q2x/&2),~ O, leads to inaccuracy in the determination of the flow rate z 
which does not exceed 1%, so that eq. (7) would be reduced to the Furry 
and Jones relation [13]: 

= Hx( 1 - x) - K Ox/& 

Integrating Eq. (7a) in the static case gives 

(7a) 

In Q = (H/K)h (8) 

where h is the geometrical height of the column. 
The quantity Q is defined as the degree of separation for the TDC. It 

gives the interval in which the concentration of each component can vary 
along the height of the column. By definition, 

Q = x(1 - Xo)/[Xo(1 - x)] 

where x o is the initial and x is the final concentration of whichever gas 
component. If the TDC is considered as a single separation element, Q = q. 

The coefficients H and K can be interpreted as components of mass 
flow and depend on the geometry of the column. As shown in Ref. 13 for 
flat geometry, 

H =  (a T gp2 a3 AT2B)/(6! ~/T2) 

K=Kc+K~+K~ 
K~ = (p3g2 a7 AT2B)/(9! r/2T2O) 

K a = p DaB 

(9) 

(10) 

(11) 

(12) 

Here g is earth's gravitational acceleration, q is the viscosity of the initial 
gas mixture, D is the diffusion coefficient, B is the width (average 
perimeter) of the column, 6 is the distance between the hot and the cold 
wall of the column (see Fig. 1), 

A T =  T 2 -  T 1 

and 

T =  IT1 r2/(T1 + r2)] ln(T2/T~) 

is the average temperature at which the values of the parameters depending 
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on T are given. It is generally assumed that in the case of large AT, it is 
better to use tbe mean logarithmic than the simple mean value of T [25]. 

The coefficient Kp is introduced because of the nonideal geometry of 
the TDC and the nonuniform temperature field leading to a parasitic 
convection. For an ideal column Kp = O. 

Introducing the expressions for H and K from Eqs. (9)-(12) in Eq. (8) 
for an ideal TDC (Kp = 0), one obtains 

o{ T AT h 
In Q -  - -  (13) 

(pg ATb4/lOOStl DT) + (360q DT/pg ATb 2) 

Equation (13) can be used for the determination of the thermal 
diffusion factor eT from the experimental data of the TDC: the degree of 
separation Q is calculated from the compositions of the initial and final 
mixtures. T1 and T2 can be accurately determined during the experiment, 
but the averaging of the kinetic coefficients and the density of the gas 
mixture along the height of the column is quite difficult. The possible error 
resulting from the nonideal geometry of TDC and from neglecting Kp in 
Eq. (10) is considered below. 

The difficulties in the method for determining ev as proposed by 
Clusius and Hfiber [26] and later developed by Saviron et al. [27, 28] are 
considerably overcome by the introduction of a "scaling" factor F~ in 
Eq. (13), keeping the exponential form of this equation, 

in Qmax = ~TFs (14) 

According to Clusius and Hiiber [26], F S is a temperature-dependent 
constant for a particular TDC but is independent of the initial concen- 
tration of the mixture, x0. Fs is experimentally determined by calibrating 
TDC using a gas mixture of known er (e.g., determined by the two-bulb 
method). The thermal diffusion factor can be deduced from Eq. (14) for 
any other gas mixture if, in the same column, Qmax is reliably determined. 
The use of Qmax in Eq. (14) leads to the isobaric nature of Fs. As is well 
known from the general theory of FJO [12], Q strongly depends on the 
pressure, and In Q(p) passes through a maximum. In this way the theory 
was experimentally confirmed [29, 30]; see also Ref. 15. By applying 

[ ~?(ln Q ) ]  = 0 

OP ~Q = Qmax 

Fs = Fs(R, r, 6, h, T) 
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The temperature dependence of the isobaric scaling factor Fs was 
carefully examined by Acharyya etal. [31] and the method was further 
developed. 

We would like to give some remarks concerning the isobaric nature of 
Fs, especially at elevated pressures and for nonisotopic mixtures (i.e., gases 
with considerably different masses). 

If Xo, 6, h, T1, and T2 are invariable constants, practically in all cases 
Popt at which Q = Qmax can be found. Generally for different x0, Popt would 
also be different. In the case of isotopic mixtures or mixtures of gases with 
similar physical properties, the dependence of Popt on x o is weak and can be 
neglected if the changes in p and r/are very small. Therefore the validity of 
the relation c~s determined by use of the scaling factor Fs is restricted 
not only at T =  const, but also at p ~ const. In the separation of gases with 
very different physical properties, the value of Popt actually depends on the 
initial concentration Xo, as can be seen in Fig. 2, where the shift Of Popt with 
the initial concentration x o of H e - N  2 mixtures is shown. Such an effect has 
been previously observed by Saviron et al. [28] in He-Ar and Ne Xe 
mixtures. In such a case this method would give eTI(X0) for p r  
which is unacceptable. The experimental determination of the thermal dif- 
fusion factor aT using F~ does not give the relations C~T(p) for T =  const and 
Xo = const. In order to obtain these relations, several TDC with different 6 
must be employed. This is quite inconvenient and was not practical for use. 

The analysis of TDC was accomplished by Rozen [20] in the 
framework of the general theory of mass transfer. Essential for this theory 
is the concept of the transfer unit height (TUH), a quantity with a dimen- 
sion of length (ho), which can be physically interpreted as the effective 
height of the column at which an "elementary" part of the total concen- 
tration change for the chosen component takes place. By the introduction 
of TUH the mass transfer process is described discretely as consisting of N 
stages, so that 

N =  h/ho (15) 

In principle, the value of ho (or N) can be found from the main 
equation of the mass transfer theory, which in the most general case is 

dM=j• dF, j~ =k(y-  yp) (16) 

where M is the transfered mass through unit area for local deviations of 
the equilibrium concentration of the appropriate component in either of 
the two vertical flows (L or G)(y-yp), and k is the phenomenological 
coefficient of mass transfer. 

In the case of laminar flow, regardless of the kind of process of 
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Fig. 2. Degree of separation Q in a thermal diffusion 
column as a function of pressure at T= 365 K and initial 
concentration of the light component of the He-N2 
mixtures: ( 0 )  values of In Q at Xo=0.298; ([Z) values of 
In Q at Xo=0.534; (�9 values ofln Q at Xo=0.854. 

separation, including irreversible single phase processes such as thermal 
diffusion, the equation for transverse diffusion flow J l  has the form 

j•  = pO[ -Ox/Os + 8x(1 - x)] (17) 

where x is the local concentration of the light component. 
To simplify the equations the coefficient e, defined as 

= ( q -  1)/q (18) 

is introduced. Both coefficients (q and e) are commonly used in the theory 
of gas separation in columns. 

The local concentration x, as well as e, depends on the coordinate s 
(or on the radius r in the case of cylindrical symmetry), and obviously in 
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the case of thermodiffusion e=~T61n  T/~s  [see Eqs. (1) and (3)]. For 
cylindrical symmetry (i.e., two coaxial cylinders) instead of the linear 
approximation of Furry and Jones [13, 14], where the gradients in Eq. (1) 
are replaced by the averaged-over 6 values of the concentrations x and y 
and velocity of the vertical flows a, Rozen [-20] derived exact solutions of 
the equations of convectional diffusion, by integrating Eq. (17) over the 
coordinate s in the approximation 

s ~ r ~  < r 2  

where rl and r2 are the inner and outer radii of the cylindrical ring, 

d x / d z  = a y / d z  = o 

i.e., there is no vertical diffusion and the velocity of the convectional flows 
is determined from the equation of continuity. In view of an exact solution 
for e, the limitation of the elementary theory 1-14] e,~ 1 can be overcome 
and thus one can work not only with isotopic mixtures, but also at large 
values of c~ T and large gradients of T, i.e., in large intervals of temperatures, 
pressures, and concentrations. The full system of Rozen's equations is quite 
complicated and it is not the aim of this paper to review them, but some 
resulting equations are essential for our work. 

For the transverse diffusion flow, in the approximation used by Furry 
and Jones, one obtains 

J i  = ( D p / 6 ) [ y  - x + ~x(1 - x)] (19) 

where x and y are the concentrations of the appropriate component in the 
two vertical flows. 

It was shown in Ref. 20 that if the mass transfer process is regarded as 
a second-order reaction, 

[ y  - x + ex(1 - x)] = y - yp (20) 

which means that the process in the thermal diffusion column is described 
by the phenomenological expression for mass transfer, Eq. (16), as 

k = D p / 6  (21) 

There exists a simple relation between the coefficient with a dimension 
of length in the Rozen's equations and the kinetic coefficients of Furry and 
Jones [Eqs. (10) (12)]: 

Kc = hcL;  Kd = h a L  (22) 
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where L is the hydrodynamical laminar vertical flow along the column 

L = ~  IPGI ds (23) 

The coefficients h c and he are taken for the appropriate components of 
ho (TUH) by analogy with Eq. (10). 

In Ref. 20 it is consecutively shown that 

ho = hc + he + hp (24) 

hc = (pg A T 64)/( 1008/-] O T) (25) 

ha= (360r/DT)/(pg AT62) (26) 

hp is part of ho, analogous to Kp in Eq. (10). 
From Eqs. (13), (15)-(17), and (19) it follows that 

In Q = (aT ATh)/(2Tho) = (~'r ATN)/(2T) (27) 

Using Eq. (27), cq- can also be calculated from the experimental data 
of TDC. Equation (27) is clearly equivalent to Eq. (13). 

In the present work a new method is proposed for the determination 
of a T over large temperature and pressure ranges by a TDC. We should 
emphasize the important role of the concept of TUH in this method. The 
results of Rozen obtained in Ref. 20 by integration of the mass transfer 
equation are also essentially used. The method itself is considered in detail 
in Section 3. 

3. N E W  M E T H O D  FOR E X P E R I M E N T A L  D E T E R M I N A T I O N  
OF T HE  T H E R M A L  DIFFUSION FACTOR FROM COLUMN 
M E A S U R E M E N T S  

Having in mind Eqs. (15) and (16), it is easy to show that the number 
of discrete steps of the thermodiffusion process (i.e., the number of TUH), 
in the mass transfer theory, can be calculated from 

N : h / h o = I X 2  dx  (28) 
xi y - -  Y p  

When the TDC is used for determination of c%, there is no gas 
production, or y = x along the height of the column. The equilibrium curve 
for such a process should be described by the equation 

(1 -e)x 
(29) 

Y P  - -  1 - ex 
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and, respectively, 

ex(1 - x ) 

Y - -  YP - 1 - ~,x 

The integration of Eq. (28) using Eq. (30) gives for N 

N =  (l/e)In Q - l n  QL 

or 

401 

(30) 

(31) 

in Q = e (N+ln  QL) (32) 

The relation between the first kinetic coefficient H of Furry et al. 
deduced in Ref. 20 is analogous to Eq. (22) 

H =  eL 

From Eqs. (32) and (22a), one gets 

ln(QHQIc-5) = ~N= (H/K)h 

The quantities in Eq. (33) are as follows: 

Q H  = X H 1 / X H 2  

Q, = X~l/X~ 

H =  (2ep2g 63 A TB)/(6! rlT) 

(22a) 

(33) 

(34) 

(35) 

(36) 

where xL~ and x m are the concentrations of lighter gas at the top and bot- 
tom of the TDC respectively, and xm and Xu2 are the concentrations of the 
heavier gas at the bottom and top of the TDC, respectively, ex is implicitly 
included in Eq. (33) through e. 

For e ~ 1 the obvious approximation for Eq. (30) is 

y - -  y p  ~ X ( 1  --X) (37) 

The integration of Eq. (28) using Eq. (37) gives 

N =  1/e in Q (38) 

from which the equation of Furry et al. (8) is easily derived. 
An important new aspect in the theory is the exponential factor (1 - e )  

in the left-hand side of Eq. (22). The further derived relations are more 
complicated, but the method for determination of eT is not restricted to 
isotopic mixtures and low pressures. 
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From Eq. (33), using Eqs. (6) and (18), for ~x follows an equation dif- 
ferent from those cited above: 

aT = In \ N -  In 

This relation can be used for more precise experimental determination of 
a T than by Eq. (27). It is applicable, on the other hand, to gas mixtures 
practically of all kinds. 

Strictly speaking, the above-derived equation [Eq. (39)] is valid for an 
ideal column (Kp = 0 or hp = 0). It is convenient to describe the deviations 
from an ideal TDC introducing a new coefficient in the following way: 

kp = K/(K. + Kd) (40) 

Having in mind the two sets of relations, Eqs. (9)-(12) and 
Eqs. (24)-(26), it can be shown that 

kp = ho/(hc + hd) = ho/h~ (41) 

In Eq. (41) h* denotes the TUH for an ideal column. From Eqs. (15) and 
(41), it follows that 

N* = ho/h ~ = kpN (42) 

From Eqs. (41), (42), and (39), one obtains 

aT = in \N*/kp - m ~ n l /  

The condition for an ideal column (Kp=0)  is equivalent t o  k p =  1 in 
Eq. (40), i.e. 

(N* +In~L]/ln(T,/T,)  (44) 
~ * = l n  N * -  ~HII  

Using Eq. (5), one obtains 

ks = aT/~* = In q/ln q* (45) 

For the thermodiffusion process, in all practical cases q < 2. Therefore, with 
an error less than 3% it is sufficient to hold only the first term of the 
power-series expansion of ln q. In that case, employing Eq. (39), one 
obtains 

In q = 2 ( q -  1)/(q + 1) = 2 In Q/E2N+ ln(QL/QH)] (46) 

In q* = 2(q* -- 1)/(q* + 1 ) = 2 In Q/[2N* + In(QL/QH)] (47) 
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Substituting the values of In q and In q* from Eqs. (46) and (47) in 
Eq. (45) and using Eq. (42) for ks, one obtains 

1 + (1/2N*)ln(QL/QI4) 
ks = kp 1 + (kp/ZN*) ln(QL/QH) (48) 

As so far as  kp >/1 ,  it is obvious that 

1 + (1/2N*) ln(QL/QH) .< 
1 + (kp/2N*)ln(QL/QI4) "~ 1.0 

and subsequently, 

kp>>-ks>~ 1.0 

On the other hand, it can be shown that 

(1/2N*) ln(QL/QH) ~ 1.0 

so that in the first approximation, k, ~-kp. 
In such a case, 

l n q = k s l n q *  =kplnq*,  aT=ks~*=kpa*  

The real value of a T can be determined from Eq. (39) if kp ( o r  ks) is 
known. If not, only the ideal value a* is calculated. Its values are always 
lower than the real one (aT). 

According to Vasaru etal.  [23] and Scrensen et al. [32], the coef- 
ficient Kp is up to 20% of the sum (Kc+Kd), i.e., kp= 1.0-1.2.  So 
calculating aT from Eq. (39) with kp= 1.0, the error should be less than 
20%. In order to lower the influence of the experimental error itself, it is 
convenient to work in relative units. It seems reasonable to accept that for 
two experiments in the same TDC at different temperatures and pressures,  

! t t  kp/kp ~ 1.0 

Then with the same error a relative coefficient might be introduced 

~Ti = aTi/aTo = a'~i/a'~o (49) 

where aTi and a*i are the values of aT and a* derived from the particular 
experiment and aT0 and a*0 are the values of aa- and a* under conditions 
accepted as a reference point. 

Laranjeira [33] has shown that for given temperatures T1 and T2 and 
pressure p, 

a~ 1 = b - mxo + axo(1 - Xo)/(Xo + c) (50) 
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where x o is the initial concentration and a, b, c, and m are characteristic 
constants of the gas mixture. 

In relative units Eq. (50) should be 

where 

~-?~ = / 5  - r~Xo + aXo(1  - Xo)/(Xo + c) 

fit = m~T0  

/5 = b~To 

= a0~Yo 

(51) 

(52) 

Usually the nonlinear term in Eq. (50) is negligible [33], so that with 
sufficient accuracy, 

~ l  = b - m x  o (53) 

~-  1 =/5 _ rhxo (54) 

The relations (53) and (54) are equations of straight lines with a negative 
slope. They intercept the abscissa (see Fig. 3), but the interception point is 
at Xo > 1, i.e., outside the interval of interest (0 ~< Xo ~< 1.0). 

For a given gas mixture ~T can be calculated either from the exact 
equation (51) or from its linearized form, given by Eq. (54). If reliable data 

~:r 4 

Fig. 3. 

\ 

The rma l  diffusion factor  c ~  1 and  ~a: t vs in i t ia l  

concen t ra t ion  of the l ight  c o m p o n e n t  x 0. 
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for aT0 for the mixture under consideration exist, the coefficients b, m, and 
a can be determined experimentally, using the relations (52). Knowing the 
coefficients in Eq. (51) or in (54), one can transform them into the form 
(50) or (53) by employing the relations in Eqs. (52). The data for C~T0 could 
be obtained in the swing separator as well as by the two-bulb method. 
When interpreting the experimental data one has to keep in mind that the 
coefficients in Eq. (51) or (54) are derived using the values for 

~Ti  - -  (~Ti/0~T0 

which are experimentally determined. 
By using Eq. (13) instead of Eq. (39), the error in assessing C~T can be 

obtained. If we set 

n=lnQn~nQL (55) 

expression (33) may be presented as 

where 

In Q =kneN (56) 

k n= 1 / [ 1 - e / ( n +  1)] (57) 

When QL--* 1, the coefficient n tends to oe and, respectively, k n ~ 1. 
As a result, Eq. (56) becomes equivalent to Eq. (8) or (38). If, however, 
QH ~ 1, then n ~ 0 and, correspondingly, k n ~ 1 / (1 -  e )=  q. Consequently 
Eq. (56) becomes 

In Q = qeN (58) 

From Eq. (58) it follows that 

and from Eq. (38), 

e = In Q/qN (59) 

= in Q/N (60) 

Evidently, Eq. (60) will give, in this case, larger values for e (hence C~T) 
compared to those of Eq. (59). The corresponding error will be 

Ae/e = (q-  1)-100% (61) 

This, in fact, is the maximum possible error. As an illustration one can 
consider the following example. 
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At Tz /T  1 = 1.8 (which can be easily obtained in practice) and c~ = 0.4, 
which is normal  for mixtures with a large value of AM/(M~ + M2) (cf., e.g., 
Ref. 34), we have 

q = (Tz /T  ~)~r = 1.25 

If we replace this value of  q in Eq. (61), we obtain a max imum error  of 
25% for such a gas mixture. 

The above considerations are also illustrated in Fig. 4 by the behavior  
of ~T(x0) at T =  const and p = const. The solid line gives the values of  ~-71 
valculated from our  experimental data  on He-N2  using Eq. (39). The 
dashed line corresponds to the ~az 1 values as calculated from the same 
experimental results using the FJO  equat ion (13). Results, shown in Fig. 4, 
are obtained at p = 48 kPa,  which is quite different from Popt for all He -N2  
mixtures investigated by us (see Fig. 2). At Popt there is a max imum 
gradient of  concentrat ions along the column, i.e., an essential difference of  
the physical properties of the mixture. For  gas mixtures consisting of com- 
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Fig. 4. Experimental data for the thermal diffusion 
factor ~t-~ 1 vs initial helium concentration Xo for He-N 2 
mixture at the average temperature T= 365 K and 
pressure p = 48 kPa. (�9 Values of ct~l calculated by 
the method proposed in the present work; (O) values 
of cq- l calculated by the FJO method [12]. 
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ponents with considerably different molecular masses a significant error in 
determining the thermal diffusion factor C~T may be introduced. For that 
reason the value p = 48 kPa was chosen. 

The experimental setup used for obtaining the results, presented in 
Figs. 2 and 4, is described in detail in Ref. 35. 

4. C O N C L U S I O N S  

The proposed method makes it possible to get reliable experimental 
results for the thermal diffusion factor over large temperature and pressure 
ranges, for arbitrary concentrations and physical properties of the gas 
mixtures. This method can also be used in other types of experiments, e.g., 
for the determination of optimal conditions of the separation process in a 
thermal diffusion column. 
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